Algebras of analytic functions: from Valencia to Buenos Aires

Joint works with Manolo, Domingo, Santiago Muro and Daniela Vieira

Universidad de Buenos Aires

XIV Encuentros Análisis Funcional Murcia Valencia
Manolo’s birthday
Some definitions:

Let $U \subset X$ be an open subset.
Some definitions:

Let $U \subset X$ be an open subset.

$B \subset U$ is U-bounded if it is bounded and $\text{dist}(B, X \setminus U) > 0$.
Some definitions:

Let $U \subset X$ be an open subset.

$B \subset U$ is U-bounded if it is bounded and $\text{dist}(B, X \setminus U) > 0$.

$H_b(U)$: algebra of holomorphic functions on U that are bounded on U-bounded sets ("bounded type holomorphic functions")
Some definitions:

Let $U \subset X$ be an open subset.

$B \subset U$ is U-bounded if it is bounded and $\text{dist}(B, X \setminus U) > 0$.

$H_b(U)$: algebra of holomorphic functions on U that are bounded on U-bounded sets ("bounded type holomorphic functions")

$H_b(U)$ is endowed with the topology of uniform convergence on U-bounded sets.
Some definitions:

Let $U \subset X$ be an open subset.

$B \subset U$ is U-bounded if it is bounded and $\text{dist}(B, X \setminus U) > 0$.

$H_b(U)$: algebra of holomorphic functions on U that are bounded on U-bounded sets ("bounded type holomorphic functions")

$H_b(U)$ is endowed with the topology of uniform convergence on U-bounded sets.

We denote by $\mathcal{M}_b(U)$ the spectrum of $H_b(U)$:

$$\mathcal{M}_b(U) = \{ \phi : H_b(U) \to \mathbb{C} : \text{continuous, linear, multiplicative, } \phi \neq 0, \}.$$
The spectrum of $H_b(U)$ - the beginnings

Manolo 2015

Algebras of analytic functions: from Valencia to Buenos Aires
The spectrum of $H_b(U)$ - the beginnings

The spectrum of $H_b(U)$ - The beginnings

δ_x(f) = f(x)

If X is symmetrically regular, $M_b(U)$ is a Riemann domain over X^{**}.

A particular case: $U = X$ reflexive $M_b(X)$ is a disjoint union of copies of X.
$M_b(U) : \text{spectrum of } H_b(U)$
The spectrum of $H_b(U)$ - The beginnings

$M_b(U) : \text{spectrum of } H_b(U)$

$\delta : U \nrightarrow M_b(U)$

$x \mapsto \delta_x$

where $\delta_x(f) = f(x)$

$\pi : M_b(U) \rightarrow X^{**}$

$\pi(\phi) = \phi |_{X^*}$

If X is symmetrically regular, $M_b(U)$ is a Riemann domain over X^{**}.

A particular case: $U = X$ reflexive $M_b(X) \text{ is a disjoint union of copies of } X$.
The spectrum of $H_b(U)$ - The beginnings

$M_b(U)$: spectrum of $H_b(U)$

$$\delta: U \hookrightarrow M_b(U) \quad \pi: M_b(U) \rightarrow X^{**}$$

$$x \mapsto \delta_x$$

where $\delta_x(f) = f(x)$

$$\pi(\phi) = \phi \mid_{X^*}$$

If X is symmetrically regular, $M_b(U)$ is a Riemann domain over X^{**}.
The spectrum of $H_b(U)$ - The beginnings

$M_b(U)$: spectrum of $H_b(U)$

$$\delta : U \hookrightarrow M_b(U)$$
$$\pi : M_b(U) \twoheadrightarrow X^{**}$$

$$x \mapsto \delta_x$$

where $\delta_x(f) = f(x)$

$$\pi(\phi) = \phi |_{X^*}$$

If X is symmetrically regular, $M_b(U)$ is a Riemann domain over X^{**}.

A particular case: $U = X$

reflexive

$M_b(X)$ is a disjoint union of copies of X
The spectrum of $H_b(U)$ - The beginnings

$M_b(U)$: spectrum of $H_b(U)$

$$\delta : U \leftrightarrow M_b(U)$$

$$x \mapsto \delta_x$$

where $\delta_x(f) = f(x)$

$$\pi : M_b(U) \rightarrow X^{**}$$

$$\pi(\phi) = \phi|_{X^*}$$

If X is symmetrically regular, $M_b(U)$ is a Riemann domain over X^{**}.

A particular case: $U = X$

reflexive

$M_b(X)$ is a disjoint union of copies of X
The spectrum of $H_b(U)$ - the new millenium
The spectrum of $H_b(U)$ - the new millenium

Joint work with Daniel Carando and Domingo García to appear
in Advances in Mathematics.
The spectrum of $H_b(U)$ - the new millennium
The spectrum of $H_b(U)$ - the new millennium

Joint work with Daniel Carando and Domingo García to appear in Advances in Mathematics.
For U a convex and balanced open subset of X:
The spectrum of $H_b(U)$ - the new millenium

For U a convex and balanced open subset of X:

- $\delta : U \hookrightarrow M_b(U)$
 $\delta_x(f) = f(x)$
For U a convex and balanced open subset of X:

- $\delta : U \hookrightarrow M_b(U)$
- $\delta_x(f) = f(x)$
The spectrum of $H_b(U)$ - the new millenium

For U a convex and balanced open subset of X:

- $\delta : U \hookrightarrow M_b(U)$
- $\delta_x(f) = f(x)$
For U a convex and balanced open subset of X:

- $\delta : U \hookrightarrow M_b(U)$
- $\delta_x(f) = f(x)$
- $\pi(M_b(U)) = U$
The spectrum of $H_b(U)$ - the new millennium

For U a convex and balanced open subset of X:

- $\delta: U \hookrightarrow M_b(U)$
 $\delta_x(f) = f(x)$

- $\pi(M_b(U)) = U$
The spectrum of $H_b(U)$ - the new millenium

If U is an arbitrary open set...
The spectrum of $H_b(U)$ - the new millennium

If U is an arbitrary open set...

Example

H a Hilbert space,

$\exists U \subset H$ such that:
The spectrum of $H_b(U)$ - the new millenium

If U is an arbitrary open set...

Example

H a Hilbert space,
$\exists U \subset H$ such that:
- “$M_b(U) \cap H = U$”
The spectrum of $H_b(U) -$ the new millenium

If U is an arbitrary open set...

Example

H a Hilbert space,
$\exists U \subset H$ such that:

- $"M_b(U) \cap H = U"$
- $\pi(M_b(U)) = H$
The spectrum of $H_b(U)$ - the new millenium

If U is an arbitrary open set...

Example

H a Hilbert space, \(\exists U \subset H \) such that:
- "\(M_b(U) \cap H = U \)"
- \(\pi(M_b(U)) = H \)
The spectrum of $H_b(U)$ - the beginnings
The spectrum of $H_b(U) - the new millennium$

Joint work with Daniel Carando and Domingo García to appear in Advances in Mathematics.
The spectrum of $H_b(U)$ - next generation

If U is an arbitrary open set...
The spectrum of $H_b(U)$ - next generation

If U is an arbitrary open set...

Example

In almost any (reflexive) Banach space X, $\exists U \subset X$ such that:

- $"M_b(U) \cap X = U"$
- $\pi(M_b(U)) = X$
If U is an arbitrary open set...

Example

In almost any (reflexive) Banach space X, $\exists U \subset X$ such that:

- $"M_b(U) \cap X = U"$
- $\pi(M_b(U)) = X$
For $U = B_{\ell_p}$ the unit ball of ℓ_p
The spectrum of $H_b(U)$ - next generation

For $U = B_{\ell_p}$ the unit ball of ℓ_p

If $p \in \mathbb{N}$, $p \geq 2$

$M_b(B_{\ell_p})$:
The spectrum of $H_b(U)$ - next generation

For $U = B_{\ell^p}$ the unit ball of ℓ^p

If $p \in \mathbb{N}, p \geq 2$

- For each $0 < \rho < 1$, there are lots of components that are exact copies (via π) of balls of radius ρ centered at 0.
The spectrum of $H_b(U)$ - next generation

For $U = B_{\ell_p}$ the unit ball of ℓ_p

If $p \in \mathbb{N}$, $p \geq 2$

- For each $0 < \rho < 1$, there are lots of components that are exact copies (via π) of balls of radius ρ centered at 0.
For $U = B_{\ell_p}$ the unit ball of ℓ_p

If $p \in \mathbb{N}$, $p \geq 2$

- For each $0 < \rho < 1$, there are lots of components that are exact copies (via π) of balls of radius ρ centered at 0.

For $0 < r < 1$, choose ϕ a weak-star adherent point of $\{\delta_re_n\}_n$.

$M_b(B_{\ell_p})$:
For $U = B_{\ell_p}$ the unit ball of ℓ_p

If $p \in \mathbb{N}$, $p \geq 2$

- For each $0 < \rho < 1$, there are lots of components that are exact copies (via π) of balls of radius ρ centered at 0.

For $0 < r < 1$, choose ϕ a weak-star adherent point of $\{\delta_{r e_n}\}_n$. The component of ϕ is a ball of radius $\rho = (1 - r^p)^{1/p}$.
The spectrum of $H_b(U)$ - next generation

For $U = B_{\ell_p}$ the unit ball of ℓ_p

If $p \in \mathbb{N}$, $p \geq 2$

- For each $0 < \rho < 1$, there are lots of components that are exact copies (via π) of balls of radius ρ centered at 0.

For $0 < r < 1$, choose ϕ a weak-star adherent point of $\{\delta_{r e_n}\}_n$. The component of ϕ is a ball of radius $\rho = (1 - r^p)^{1/p}$. What about the other components?
The spectrum of $H_b(U)$ - the South American connection

• This is part of a joint work (in progress) with Santiago Muro and Daniela Vieira (Universidade de São Paulo).
• We started after WidaBA14, a conference held in Buenos Aires.

Algebras of analytic functions: from Valencia to Buenos Aires

Manolo 2015
The spectrum of $H_b(U)$ - the South American connection

- This is part of a joint work (in progress) with Santiago Muro and Daniela Vieira (Universidade de São Paulo).
The spectrum of $H_b(U)$ - the South American connection

- This is part of a joint work (in progress) with Santiago Muro and Daniela Vieira (Universidade de São Paulo).
- We started after WidaBA14, a conference held in Buenos Aires.
The spectrum of $H_b(U)$ - the South American connection

- This is part of a joint work (in progress) with Santiago Muro and Daniela Vieira (Universidade de São Paulo).
- We started after WidaBA14, a conference held in Buenos Aires.
The spectrum of $H_b(U)$ - the South American connection
The spectrum of $H_b(U) -$ the South American connection
The spectrum of $H_b(U)$ - the South American connection

X a reflexive Banach space with 1-unconditional Schauder basis
X a reflexive Banach space with 1-unconditional Schauder basis
The spectrum of $H_b(U)$ - the South American connection

X a reflexive Banach space with 1-unconditional Schauder basis

- If U is a complete Reinhardt domain...

$M_b(U)$:
The spectrum of $H_b(U)$ - the South American connection

X a reflexive Banach space with 1-unconditional Schauder basis

- If U is a complete Reinhardt domain...
- ... every component is (a copy of) a complete Reinhardt domain.
The spectrum of $H_b(U)$ - the South American connection

Every component is a ball.

The radius of each component decreases as we move away from B_{ℓ^p}.

There are two measures of the size of $\phi \in \pi - 1(0)$: $R(\phi)$ and $Q(\phi)$.

The radius ρ of the ball centered at ϕ satisfies

$$ (1 - R(\phi))^p \leq \rho \leq (1 - Q(\phi))^p. $$

In particular, the only ball with radius 1 is the ball centered at δ_0.
The spectrum of $H_b(U)$ - the South American connection

$U = B_{\ell_p}$

Every component is a ball.

The radius of each component decreases as we move away from B_{ℓ_p}.

There are two measures of the size of $\phi \in \pi - 1(0)$: $R(\phi)$ and $Q(\phi)$.

The radius ρ of the ball centered at ϕ satisfies

$$(1 - R(\phi))^p \leq \rho \leq (1 - Q(\phi))^p.$$

In particular, the only ball with radius 1 is the ball centered at δ_0.

Algebras of analytic functions: from Valencia to Buenos Aires
Manolo 2015
$U = B_{\ell_p}$

- Every component is a ball.
Every component is a ball.
The radius of each component decreases as we move away from B_{ℓ_p}.
The spectrum of $H_b(U)$ - the South American connection

$U = B_{\ell_p}$

- Every component is a ball.
- The radius of each component decreases as we move away from B_{ℓ_p}.

There are two measures of the size of $\phi \in \pi^{-1}(0)$: $R(\phi)$ and $Q(\phi)$.
The spectrum of $H_b(U)$ - the South American connection

$U = B_{\ell_p}$

- Every component is a ball.
- The radius of each component decreases as we move away from B_{ℓ_p}.

There are two measures of the size of $\phi \in \pi^{-1}(0)$: $R(\phi)$ and $Q(\phi)$. The radius ρ of the ball centered at ϕ satisfies
The spectrum of $H_b(U)$ - the South American connection

$U = B_{\ell_p}$

- Every component is a ball.
- The radius of each component decreases as we move away from B_{ℓ_p}.

There are two measures of the size of $\phi \in \pi^{-1}(0)$: $R(\phi)$ and $Q(\phi)$. The radius ρ of the ball centered at ϕ satisfies

$$(1 - R(\phi)^p)^{\frac{1}{p}} \leq \rho \leq (1 - Q(\phi))^p.$$
The spectrum of $H_b(U)$ - the South American connection

$U = B_{\ell_p}$

- Every component is a ball.
- The radius of each component decreases as we move away from B_{ℓ_p}.

There are two measures of the size of $\phi \in \pi^{-1}(0)$: $R(\phi)$ and $Q(\phi)$. The radius ρ of the ball centered at ϕ satisfies

$$(1 - R(\phi)^p)^{\frac{1}{p}} \leq \rho \leq (1 - Q(\phi))^p.$$

In particular, the only ball with radius 1 is the ball centered at δ_0.

Algebras of analytic functions: from Valencia to Buenos Aires
Manolo 2015
Valencia and Buenos Aires

Valencia

Buenos Aires

Algebras of analytic functions: from Valencia to Buenos Aires Manolo 2015
Valencia and Buenos Aires

Valencia
• Manolo
• Domingo G.

Buenos Aires
• D.C.

Algebras of analytic functions: from Valencia to Buenos Aires
Manolo 2015
Valencia
- Manolo
- Domingo G.
- Pablo G.

Buenos Aires
- D.C.
- Nacho Z.
- Vero D.
Valencia and Buenos Aires

<table>
<thead>
<tr>
<th>Valencia</th>
<th>Buenos Aires</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Manolo</td>
<td>• D.C.</td>
</tr>
<tr>
<td>• Domingo G.</td>
<td>• Nacho Z.</td>
</tr>
<tr>
<td>• Pablo G.</td>
<td>• Vero D.</td>
</tr>
<tr>
<td>• Pablo S.P.</td>
<td></td>
</tr>
</tbody>
</table>
Valencia

- Manolo
- Domingo G.
- Pablo G.
- Pablo S.P.

Buenos Aires

- D.C.
- Nacho Z.
- Vero D.
- Pablo S.P.
Valencia:
- Manolo
- Domingo G.
- Pablo G.
- Pablo S.P.

Buenos Aires:
- D.C.
- Nacho Z.
- Vero D.
- Pablo S.P.
- Silvia L.
Valencia
- Manolo
- Domingo G.
- Pablo G.
- Pablo S.P.

Buenos Aires
- D.C.
- Nacho Z.
- Vero D.
- Pablo S.P.
- Silvia L.
- Román V.
Valencia
- Manolo
- Domingo G.
- Pablo G.
- Pablo S.P.

Buenos Aires
- D.C.
- Nacho Z.
- Vero D.
- Pablo S.P.
- Silvia L.
- Román V.
- Dany G.
- Santi M.
Thank you!

Thank you Manolo...
...for leading the way!
Thank you!

Thank you Manolo...
Thank you!

Thank you Manolo...

... for leading the way!